Genetic interactions of the Arabidopsis flowering time gene FCA, with genes regulating floral initiation.

نویسندگان

  • T Page
  • R Macknight
  • C H Yang
  • C Dean
چکیده

The genes controlling the timing of the transition from vegetative to reproductive growth are likely candidates for regulators of genes initiating floral development. We have investigated the interaction of one particular gene controlling flowering time, FCA, with the meristem identity-genes TERMINAL FLOWER 1 (TFL1), APETALA 1 (AP1) and LEAFY (LFY) and the floral repression gene EMBRYONIC FLOWER 1 (EMF1). Double mutant combinations were generated and the phenotypes characterized. The influence of strong and intermediate fca mutant alleles on the phenotype conferred by a 35S-LFY transgene was also analysed. The results support a model where FCA function promotes flowering in multiple pathways, one leading to activation of LFY and AP1, and another acting in parallel with LFY and AP1. Only the latter pathway is predicted to be non-functional in the intermediate fca-4 allele. The results are also consistent with AP1 and TFL1 negatively regulating FCA function. Combination of Columbia fca and emf1 mutant alleles confirmed that FCA is required for the early flowering of emf1. EMF1 and FCA are therefore likely to operate in different floral pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulated RNA processing in the control of Arabidopsis flowering.

Flowering time is controlled in order to ensure reproductive success. Molecular genetic analyses in Arabidopsis thaliana have identified many genes regulating this developmental switch. One group of factors which promote flowering do so by down-regulating the expression of the MADS-box floral repressor, FLC. RNA processing appears to play an important role in this regulation as genes within thi...

متن کامل

Noncanonical translation initiation of the Arabidopsis flowering time and alternative polyadenylation regulator FCA.

The RNA binding protein FCA regulates the floral transition and is required for silencing RNAs corresponding to specific noncoding sequences in the Arabidopsis thaliana genome. Through interaction with the canonical RNA 3' processing machinery, FCA affects alternative polyadenylation of many transcripts, including antisense RNAs at the locus encoding the floral repressor FLC. This potential for...

متن کامل

Additional targets of the Arabidopsis autonomous pathway members, FCA and FY.

A central player in the Arabidopsis floral transition is the floral repressor FLC, the MADS-box transcriptional regulator that inhibits the activity of genes required to switch the meristem from vegetative to floral development. One of the many pathways that regulate FLC expression is the autonomous promotion pathway composed of FCA, FY, FLD, FPA, FVE, LD, and FLK. Rather than a hierarchical se...

متن کامل

Flowering on time: genes that regulate the floral transition. Workshop on the molecular basis of flowering time control.

Successful sexual reproduction in plants depends on the recognition of favourable environmental conditions and the integration of that information with endogenous developmental cues. Flowering in higher plants involves the transition of a vegetative meristem, producing leaves and stems, into a floral meristem, producing flowers. Most of our understanding of the regulation of the floral transiti...

متن کامل

Effects of sugar on vegetative development and floral transition in Arabidopsis.

Although sugar has been suggested to promote floral transition in many plant species, growth on high concentrations (5% [w/v]) of sucrose (Suc) significantly delayed flowering time, causing an increase in the number of leaves at the time of flowering in Arabidopsis. The effect of high concentrations of Suc seemed to be metabolic rather than osmotic. The delay of floral transition was due to ext...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant journal : for cell and molecular biology

دوره 17 3  شماره 

صفحات  -

تاریخ انتشار 1999